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LANDSCAPE:
Overview of Digital Technologies

In 2013, 91% of US adults owned a cell phone. The penetration rates are high across
ethnic and racial groups, as well as across ages. In early 2013, the Pew Foundation’s
Tracking for Health study found that 69% of Americans monitor some form of health
related information, and 21% of them use some form of digital device to do so (Fox &
Duggan, 2013). This high rate of adoption for digital technologies presents profound
opportunities to more intensively monitor health outcomes, better characterize the
behavioral and environmental influences on health and iliness, and to intervene

frequently and in context to improve
health. Even a basic cell phone (a
“feature phone” rather than a
smartphone) can be used to engage
participants, assess outcomes, and
deliver messages. They can be used to
give and receive data via voice and
SMS text messaging, identify location,
and provide estimates of the level of
social contact and connectedness.
These opportunities expand
exponentially when using a smart-
phone, tablet or e-reader, which has
substantially more computing power,
applications, interface capabilities, and
internet access than feature phones.
Smart-phones are owned by 60%+ of
US adults and are the fastest growing
segment of wireless communication
devices. (Smith, 2013)
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Smartphones: Smartphones are a natural point of engagement for much of the US
population. Data suggest that for adolescents and young adults, digital data connections
are now more frequent than voice calls (Pew Research Center, 2015). Even for older
adults, the rate of smartphone adoption is growing rapidly (Smith, 2014). The phone can
be used for voice, SMS text and email, but also through pre-recorded video and video
chats (e.g., Skype). This can facilitate a wide range of remote, interactive
communications with participants, including remote consent using technology to reduce
the variability and enhance the understandability of a complex process (Kumar et al.,
2013a).

Smartphone internal sensors can also collect data by capturing physical movement
(from GPS, gyroscopes and accelerometers), location and transportation mode (GPS),
sound, images (camera), social interactions (through location, text and voice) and some
physiological parameters (Kumar, Nilsen, Srivastava & Pavel, 2013b). Smartphones are
also capable of assessing physiological parameters when the participant interacts with
the phone (e.g., pointing the camera at their face, pressing their finger on the screen,
blow into the microphone, etc.; Kumar et al., 2013b). These data can be used to infer
the level and type of physical activity, sedentary behaviors, sleep, and mood.
Physiological data, such as heart rate can be collected via the phone’s camera or
through sensors that can be worn and that interface with the smartphone. Patient
Reported Outcomes (PROs, e.g., PROMIS, Cella et al., 2009) and performance measures
(e.g., NIH Neuroscience Toolkit, finger tapping, memory tests; e.g., Zelazo et al., 2014)
can be easily and frequently deployed through apps, emails, texts, voice actions, and
experience sampling or Ecological Momentary Assessment (EMA) methodologies that
can provide these assessments via fixed or random schedules or in response to events
(e.g., query when in a specified location, when a physiological threshold is exceeded).
Finally, data collection and aggregation can be done through apps. These apps can be
custom-made for projects or use data collected from the APIs of existing apps.



Many of the capabilities of smartphones are being integrated into smartwatches. These
smartwatches have the advantage of being in touch with the user’s skin continuously for
potential continuous
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The wearable device ecosystem has had an explosive growth (470+ wearable health
trackers); most are tracking activity, sleep, and heart rate. This includes a growing range
of commercial sensors that vary in quality, cost and focus, but which are now owned by



an increasingly large proportion of the population (Fox & Duggan, 2013). Sensors also
have been developed by industry specifically to target medical conditions. Products such
as AliveCor (ECG; Lowres et al., 2014) and BioRythym (Activity, BP, HR, hydration and
metabolism) all offer a range of options for measuring specific biomedical indices
throughout the day. Sensors that are FDA approved must show evidence of validity and
safety. Many of these wireless sensors are designed for specific conditions, such as
diabetes and asthma and are already deployed in specific patient populations (e.g.,
glucometers, spirometers). In addition to commercial sensors, there are also a number
of finely calibrated sensors designed for research. These sensors target exposures like
sun exposure (Buller, Berwick, Lantz, Klein Buller, Shane, Kane, & Liu, 2015) or second
hand smoke (Liu, Antwi-Boampong, BelBruno, Crane, & Tanski, 2013). Environmental
exposures play a major role in health and may trigger epigenetic changes or an
underlying genetic predisposition to disease (Jirtle & Skinner, 2007). In recognition of
this, in 2006 NIH funded the Genes, Environment and Health Initiative
(http://www.genome.gov/19518663). A major part of this program was funded research
to advance environmental monitoring, as well as person-level exposures to
environmental contaminants. The results of this research led to a family of new tools
and technologies that improve the ability to measure person-environment exposures
(e.g., activity, dietary intake, smoking, particulate matter exposure)
(http://www.genome.gov/19518663). Finally, there is a growing field of medication
adherence sensors including glow caps, capacitive sensors, and Proteus, an ingestible
sensor embedded in pills that verifies their consumption (Kane, Perlis, DiCarlo, Au-
Yeung, Duong, & Petrides, 2013). All of these can be deployed in ways that transmit data
in real time via the Internet (WiFi) or Bluetooth.

Digital trace data: Complementing data that is driven by personal mobile devices, data
about individuals are being captured passively as people communicate with one another
on social networks, shop, work, or engage in any activity that is capable of leaving
“digital footprints.” (Pentland, 2008) Groundbreaking insights using social network data
have been published on everything from obesity (Christakis and Fowler, 2007) to
psychological distress during the recent economic recession (Ayers, 2012). Private
industry has capitalized on this trend to refine and personalize services and marketing,
often to a remarkable degree (Turow, 2011). These data support understanding of
human dynamics and social interactions in near real-time. Mining these data for insights
about the role of social connections and influences on health is an enormous
opportunity. This opportunity is much more than the current text mining of Facebook
and Twitter posts, and includes an increasing interest in mining image and other types
of data for trends in affect, social interactions and environmental influences. These
digital footprints are ubiquitous and can be obtained unobtrusively without respondent
burden, either anonymously or with participant permission.

Scientists in academia and industry are engaged in highly promising research aimed at
miniaturization and fusion of wearable sensors that, in turn, will have the capability to
provide parallel, simultaneous streams of continuous data on multiple health-relevant



parameters (Davies, 2013). All of these data will allow for a unique opportunity to
capture intensive longitudinal data that can characterize not only risks and exposures,
but also changes in health status, occurrence of behaviors of interest (e.g., stress,
smoking and other addictive behaviors, medication usage, diet, physical activity, fatigue,
sleep, and social interactions), and individual responses to exposure. Leveraging genetic
data from the cohort, these data can be used to refine behavioral phenotypes, evaluate
potential endophenotypes, and assess gene-environment interactions.

These technologies also can be leveraged to capture the effectiveness of interventions
in what would be much closer to a ‘real world effectiveness context’ than typical
efficacy trials. Further, strategically deploying evidence-based technological adherence
interventions may support treatment studies by enhancing medication adherence and
identifying adherence issues before they disrupt a trial. The data from mobile and
wireless technologies also provides a unique opportunity to capture individual’s
responses to various treatments in real time. This temporally-dense health outcome
data can potentially reduce the number of people needed in a clinical trial, reduce the
length of trials, identify and reduce adverse events by detecting them sooner, and
enhance participation through reminders and other engagement strategies (Kumar et
al., 2013a). Technology is critical for participant engagement because consumer
electronics can be leveraged to connect and partner with volunteers, on a schedule they
control, and enhance participation by providing access to personal, trusted health
information in a secure, user-friendly way. Further, the way in which users interact with
the system provides data that can used to iteratively refine and enhance the usability
and usefulness of the system. It can also provide an affordable and reliable
communication system between the study team and the volunteer.

WORKING GROUP RECOMMENDATIONS:

1. Scope of mHealth for the cohort — By the time a national cohort can be launched, the
penetration rate of smartphones should be sufficient to use smartphones as the primary
portal for data collection and participant engagement. Use of the smartphone will allow
for use of a variety the of internal sensors in the phone, messaging capabilities of the
phones (e.g. SMS) and a range of special purpose sensors that can interface with the
phone and transmit health data wirelessly. Depending on rates of use by the initiation of
a national cohort, smartwatches also should be considered, at least for a subset of the
cohort given the additional physiological and activity data available via smartwatches.
Given the extensive range of possible variables collected by these technologies, it is
important that what is collected be driven by the scientific questions posed, not by what
is possible to collect from these devices. mHealth technology can be utilized for:

l. Cohort enrollment, consent, engagement, and to facilitate retention
* Tools for consent are now available or in development, e.g., Sage’s e-consent
* Software that can return information to participants, providing immediate
feedback or requests for input.



Il. Technology-based longitudinal data collection to better characterize medical
outcomes, including:

* Patient-reported outcomes of symptoms and functioning,

* Performance tests (sensory, motor, cognitive),

* Measures for specific conditions (e.g., weight scale, glucometer, spirometer,
blood pressure, which now often have a wireless interface to avoid repeated
manual entry.

* Sleep monitoring

Il. Technology-based longitudinal data collection currently available to better
characterize treatments, including medication adherence monitoring.

V. Technology-based data collection to characterize behavioral and environmental
exposures (probably in a subset of entire cohort given costs and effort required)

* Personal particulate matter exposure (with other particulate matter
exposure obtained from a combination of cell phone locations, durations,
and EPA data for areas)

* Physical activity, sedentary behavior, duration of moderate and vigorous
physical activity, characterization of daily activities

* Diet monitoring (prompted food diary recordings, 24 hr. recall, or pre-post
meal pictures)

* Smoking (smoking sensors on those who indicate smoking)

* Secondhand smoke (home sensors on those who indicate living with those
who smoke)

* Stress responses (heart rate variability, galvanic skin response-GSR)

* Social behavior (time alone, number of social contacts per day, etc.)

* Geolocation to estimate a variety of environmental exposures and social
determinants of health

V. Note that any of these measurements can be performed on a regular schedule, a
randomly prompted schedule, or prompted in response to a specific event (e.g., when at
a specific location).

2. Consumer vs. Research Grade mHealth - There are thousands of health apps, but
these are generally ignored by the research community because most are not evidence-
based or experimentally validated. A prime example of this is Abroms and associates
(2013) exploration of the quality of commercial apps for smoking cessation, which found
almost no evidence of evaluation or even use of best practices. This is in contrast to Free
and colleagues (2011) work to generate an empirically-supported mobile smoking
cessation intervention. The same is true for research vs. consumer grade sensors.
Actigraph, for instance, has solid validity data for measuring physical activity (Evenson &
Wen, 2015), while most commercial accelerometers (e.g., FitBit) still need validation for
research purposes (see preliminary data in Case, Burwick, Volpp & Patel, 2015). For
some devices, this is difficult to do because of the proprietary nature of the data and
algorithms. This does not necessarily mean that commercial sensor data are unusable,
but validation of these devices against the research grade standards is necessary before



many of the commercial sensors can be used in research. Many of the commercially
available sensors for specific medical conditions, e.g., glucose monitors for diabetes,
have already been tested and approved by FDA. There are benchmarks in place for new
sensors in these areas.

3. Assessment vs. Intervention — Cohort studies often experience a tension between
observational versus clinical trials research. Given the capabilities of mobile
technologies, this tension is particularly salient for mHealth research. Scientifically, the
methods for validating a sensor are no different than validating a biomarker and many
research grade sensors have been validated, at least in laboratory settings. Emerging
sensor technologies not yet validated could be rapidly validated within the context of a
large cohort study.

In contrast, interventions delivered on a mobile platform have more limited clinical
outcome data to date, but that is in part due to the long time frame for conducting a
randomized clinical trial (RCT). If an investigator submitted an RO1 grant to develop and
evaluate a smartphone app as soon as the iPhone was released (2007), the results of
this research would likely be published only recently (Riley, Glasgow, Etheredge &
Abernethy, 2013). While the cohort could be used as a test bed to evaluate certain
mHealth interventions, the primary use of mHealth in this cohort would be for better
assessing disease outcomes and for assessing behavioral and environmental exposures.

4. FDA Regulation: Unless used for diagnostic or medical treatment purposes, FDA
regulations do not apply to mHealth sensors and interventions. Further, the FDA has
clear guidance on regulations for mHealth that were updated in February 2015
(http://www.fda.gov/downloads/MedicalDevices/.../UCM263366.pdf). The FDA
considers many of the mobile apps and devices that would be utilized for a cohort study
as either exempt or apps for which it has chosen to exercise discretion. For those
devices or apps that require FDA approval, there are both assessment
(http://www.alivecor.com/press/press-releases/alivecor-receives-first-fda-clearance-to-
detect-a-serious-heart-condition-in-an-ecg-on-a-mobile-device) and intervention
(http://www.businesswire.com/news/home/20130613005377/en/WellDoc-Launches-
BlueStar-FDA-Cleared-Mobile-Prescription-Therapy#.VN1PdkJOGHw) apps, sensors and
mobile systems that have been approved. IRBs are becoming increasingly well-versed
on mHealth assessment and intervention protocols, and there is a considerable
literature on privacy and security issues (Martinez-Pérez, de la Torre-Diez, & Lépez-
Coronado, 2014).

5. Validation Cohort: As noted in other areas, cohorts can be used to deploy and
validate emerging technologies and to cross-calibrate existing measures with new
measures to maintain consistent data outputs over time while remaining current with
the latest technologies. Existing cohorts already collect data that is considered the gold
standard, and the new technology can be compared to these benchmarks without the
full cost of new trials.



6. Member Engagement: This is a critical element of a mobile-enabled cohort. Mobile
allows for user-friendly interactions for both receipt and transmission of data. Thus,
creating a Precision Medicine Initiative member engagement app that would provide
participants with data control, prompts for data entry, immediate feedback after data
entry, etc., is a feasible and manageable project. The design of the app should support a
low burden for the participant and passively return information and indicators (as
appropriate) to participants. User-interface and technology design research can be
brought to bear on this issue (e.g.,
http://www.usabilitynet.org/management/b_overview.htm). There is a science for
developing technological tools for diverse users (e.g., the disciplines of Human
Computer Interaction and User-Centered Design and User Experience). The work done
for the cohort in this area can help set the standards for mobile monitoring in other
cohort studies. Given the costs of traditional participant engagement, this may be one
of the best uses of cellphones for this project.

Barriers/Challenges

* Standards for Sensor Data: There is currently no standardized data format to
share de-identified information; most vendors have a closed ecosystem locking in
consumer data. There are efforts underway to standardize mobile data (e.g.,
Continua, HL7)

* Privacy, Security and Verification: There is growing concern that the wide range
of health data collected using cell phones may not be secure (Urban, Hoofnagle,
& Li, 2012). These security issues are often user-generated data leaks (e.g., lost
phones without passwords), but malicious loss may increase as the phone
becomes the home of financial information. Data collected must also be easily
and reliably identity-verified and not intentionally or accidentally collected if
devices are used by other individuals. Privacy and security is a focus of an
upcoming IOM workshop, a multi-federal group led by the White House and the
Secure and Trustworthy Cyberspace program at the National Science Foundation
(http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504709). Findings from
this research can serve as a basis for insuring appropriate security and privacy in
a mobile-enabled cohort.

* Motivation: A well-designed incentive system will be needed to maintain
consistent study participation. There is a wide range of possible incentives,
ranging from financial to social (e.g., Facebook ‘likes’ for organ donation) to
provision of information that is perceived as useful (e.g., relevant personal health
information). This will have significant overlap with the volunteer engagement
section, but is an extremely important aspect of the cohort effort that can be



facilitated by mobile technologies that can deliver these incentives immediately
following a participation event..

Data Quality: The quality of the data must be understood and documented,
which is critical for interpretability. Many factors affect data quality, including
the original rationale for development (medical versus entertainment, etc.), the
way in which it is used, or other factors associated with the user and the
operating context. Deploying the devices in a way that ensures high data quality
is essential. Initially, this means limiting the devices initially accessed to ensure
the value of the data being collected are known. These capabilities can expand
over time.

Ease of Use: Technology for wide deployment must be used by people with
varied technology backgrounds, socioeconomic and educational factors, and
medical conditions. Addressing this issue will require working with the use
community and learnings from the human-computer interaction and user-
centered design disciplines.

Connectivity: Sufficient connectivity and bandwidth must be largely available for
broad adoption (currently problematic in rural areas). This area is currently a
focus on the FCC’s rural broadband project
(http://www.fcc.gov/encyclopedia/rural-broadband-experiments)

Exposure assessment: The state of the art of measuring exposures to
environmental insults is still nascent. Needed are better mobile devices that can
be worn continuously to capture data on air pollution, noise, allergens and other
toxins (indoors and outside) that have known or hypothesized influences human
health. This area has been a focus of the National Institute of Environmental
Health Sciences at NIH (http://www.niehs.nih.gov/)

Representativeness: Representativeness of the data is a potential problem if
participation is limited only to those with smartphones. How do we ensure that
individuals are enrolled in cohorts in ways that allow generalization of at least
some of the knowledge gained? This is an important challenge vis a vis high-risk
patients with multiple chronic diseases who may not be early adopters of
technology, although recent research suggests that an increasing number of
people with serious illness are adopting technology, in part to manage disease
and treatment information. This information, paired with the rapid rate of
adoption of smartphone technology in the population, suggests that this issue
will become less important over time.

Smartphone compatibility: Need to ensure compatibility of data collection apps
with the myriad devices that are diverse in hardware, operating system type, and



even version of operating systems. Upgrades in operating systems and hardware
also need to be anticipated, tested, and made available to the user when these
upgrades occur.

Rapid proliferation of new technologies: Many of the technologies currently
available for this project did not exist a decade ago, and currently unimaginable
technologies are likely to be developed in the next decade. These advances will
need to be incorporated as the technology develops and co-calibration or
backward compatibility of data from earlier to current technologies needs to be
insured.

Cost of devices: Cost of sensors can grow very quickly and become prohibitive,
especially as wireless wearable biosensors to capture exposures that cannot be
assessed using stand alone smartphones are added.

Ownership of the data: Many forms of “personal health data” (Clarke et al.,
2007) derived from traditional and digital trace data sources are owned by
commercial entities that are not primarily interested in public health. Many of
these entities have a proprietary interest in not sharing information on the
validity or efficacy of their products. Obtaining access to data from commercial
entities on behalf of their users would be much more efficient than going to each
end user individually, but obtaining data access from these entities may be
problematic. To be maximally useful, these data would need to contain
identifiable information to allow linkage with other data sources which makes
the consent process more complicated.

AUDACIOUS IDEAS

Opportunity to link mobile health data with genetic data, health care utilization, real-
time environmental exposure data, and various social and behavioral determinants of
health to develop better health outcome prediction models.

Recruit sufficient numbers of volunteers who are willing to open up essentially
all of their data — genome, microbiome, medical/EMR, behavioral, social, precise
geospatial (via addresses & GPS data) - so that the multiple influences between
and among these can be understood. In some cases this would involve entire
households, families, and communities making their data available to
understand how these relationships impact the life-course of individual health.
This could be based upon a movement to “donate your data” for purposes of
science.

Create a new public culture of motivated participation and partnering in one’s
healthcare care for an individual’s own benefit and for research that will improve
the overall health of the nation/healthcare enterprise.



Accomplishing what is described in the first bullet could be facilitated by the
“Synch for Science” (S4S) initiative described in the Precision Medicine Electronic
Health Record workgroup background paper. The EHR group makes a strong
case for the difficulties in surmounting the many challenges of separate medical
record systems, IRB boards, institutional norms for providing patient data and
the like. They suggest that the already authorized Blue Button functionality could
bypass this with a campaign that would encourage patients to download their
data and then voluntarily provide it to a repository that would support Precision
Medicine research.

Promote competitions between communities across the US to become
“Framingham 2.0”. This could involve a social movement that engages multiple
stakeholders at every level — health, education, business, faith-based,
philanthropic and others — so that a culture of data sharing is promoted.

“Simple” risk factor models can be improved substantially to reflect genetic,
molecular, behavioral, social, and environmental determinants of health in ways
that facilitate more effective interventions and potentially improves analysis of
interrelationship between co-morbidities.

Sophisticated exception handling process for data allows health systems to be
paid based on population health risk, shifting the focus to preventing disease and
disease exacerbations among high risk patients as opposed to the current
patient-initiated care seeking paradigm.

In addition to preventing events through better addressing risk factors, wearable
devices could lead to preemptive medicine approaches such as fall prevention or
early detection of imminent risk for myocardial infarction or a diabetic crisis.

Epigenetics- study of the interplay between the environment (e.g. pollution,
stress, chemical alterations in body etc.) and its effect on which genes are turned
on or off (gene expression). Mobile health can play a significant role in
understanding epigenetics, especially in the intensive longitudinal
characterization of these environmental influences.
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